Wanted: Machine learning expert for manufacturing projects

This year we started to work on advanced analytical projects in manufacturing. The boom of IoT sensors, never-ending pressure to increase yields and output quality, decreasing marginal effect of lean and Six Sigma activities and the big trend of analytics caused that we quickly ran out of our existing capacities. The projects are intriguing, data are large, we are fun to work with and the demand is enormous. Honestly, I don’t see any reason why not to join us!

Continue reading


Talk write-up: transactional data analysis

I’m a data scientist not a public speaker so when the Keboola guys asked me to do a talk with them in London I was excited. The topic we chose was transactional data analysis mainly for two reasons – first, they can be used to solve so many business issues and secondly, they are everywhere.

Continue reading

Machine fine-tuning, our first project in manufacturing

For the last few years everyone talks about the importance of advanced analytics for manufacturing as a next step after lean and Six Sigma programs and what great potential it can unleash. So when we were in front of our first project we were naturally very excited and curious what can be done. The outcome of the project exceeded our expectations both in terms of data modelling and more importantly business results for our client.

Continue reading

Looking for new colleagues

It’s been almost 3 years since I started aLook. First as one-man-show, later joined by friends and family. During this time we worked on more than 60 projects with many partners for clients all over the world. It seems we mostly did a good job if I can say that from the returning customers and partners recommending us to their clients. And now we’re hiring!

Trying to motivate the team to work during our first hackathon. 1994 Sid Meier’s Colonization on a phone shared via Apple TV is hard to beat…

Continue reading

Infrastructure and Development for Data Science

Coming from a classical IT background in terms of software development it took us a while to arrive at an architecture that was capable of fulfilling our needs for Data Science projects. Be aware that treating these two in a similar matter is not a good idea, as you might seriously lower the productivity of your Data Science team.

Continue reading